
Introduction to EPICS 7

Andrew Johnson
Controls Group, Accelerator Systems Division
Argonne National Laboratory

Introduction to EPICS 7 – FNAL EPICS Development Town Hall – Andrew Johnson – 2020-02-20

2

Preface: What is EPICS 7

EPICS 7 came from combining EPICS Base (V3) and EPICS V4

■ V4 was not a replacement or rewrite of EPICS Base
■ V4 did not introduce a new IOC database

■ V4 used EPICS Base for its build system and OS-independence
■ V4 provided functionality not available in EPICS Base

■ I use ‘PVA modules’ to mean ‘the V4 code in EPICS 7’

■ Upgrading existing IOCs to EPICS 7 makes many new features
available to control system applications

Introduction to EPICS 7 – FNAL EPICS Development Town Hall – Andrew Johnson – 2020-02-20

3

Outline: What’s covered

■ What was V4 and why was it developed?
■ V4 key concepts

● pvData and pvAccess
● pvRequest
● Normative Types

■ IOCs and PVA
■ pvTools and Language Bindings

● C++, Python, Java

■ Current Status

What was V4 and why was it developed?

Introduction to EPICS 7 – FNAL EPICS Development Town Hall – Andrew Johnson – 2020-02-20

5

Describe EPICS V4 in six words

EPICS is a set of tools, libraries and applications to create a
distributed control system

V4 added structured data to EPICS

Introduction to EPICS 7 – FNAL EPICS Development Town Hall – Andrew Johnson – 2020-02-20

6

What was V4 designed for?

■ Fix Channel Access problems
Better array and string handling

■ Structured data
Extending the scope of EPICS to support data acquisition, image processing,
and beyond

■ Efficient network transfer
High performance archiving and image transfer

■ RPC type services
Service oriented architecture: archiver, snapshot, database backends

■ Complex control
Communicating with devices (groups of PVs on an IOC) in an always-
consistent, transaction type way

Introduction to EPICS 7 – FNAL EPICS Development Town Hall – Andrew Johnson – 2020-02-20

7

V4 fixed a number of problems in V3

■ Support for 64bit integers
● 1/8/16/32/64bit integers, signed and unsigned

■ Better support for arrays
● No element_count upper limit (fixed and bounded arrays possible)
● Clear distinction between arrays of size 1 and scalars

■ Better support for strings
● Arbitrary size
● No fixed limit or need for long string workaround

■ Much better support for arrays of strings
● Handles arbitrary number of arbitrary length strings

Introduction to EPICS 7 – FNAL EPICS Development Town Hall – Andrew Johnson – 2020-02-20

8

Structured data

V4 can do everything V3 can do (but better)
■ Construct pvData structures analogous to DBR types
■ For example the equivalent of a DBR_TIME_DOUBLE is the

structure

NTScalar
 double value
 alarm_t alarm
 int severity
 int status
 string message
 time_t timeStamp
 long secondsPastEpoch
 int nanoseconds
 int userTag

Introduction to EPICS 7 – FNAL EPICS Development Town Hall – Andrew Johnson – 2020-02-20

9

Efficient network transfer

pvAccess operations only send deltas on the wire.
If the value of the structure in the above example is modified to:

NTScalar
 double value 8.1
 alarm_t alarm
 int severity 2
 int status 3
 string message HIHI_ALARM
 time_t timeStamp
 long secondsPastEpoch 1460589145
 int nanoseconds 588698520
 int userTag 0

only the changed values (shown in bold) need be sent, plus a bit-set
indicating which fields have new values.

Introduction to EPICS 7 – FNAL EPICS Development Town Hall – Andrew Johnson – 2020-02-20

10

RPC type services

RPC type services can use structures that are different for every
call and different for put (request) and get (response).

pvData can encode more complex data types, like a table:

NTTable
 string[] labels [value, seconds, nanoseconds, status, severity]
 structure value
 double[] value [1.1, 1.2, 2.0]
 long[] secondsPastEpoch [1460589140, 1460589141, 1460589142]
 int[] nanoseconds [164235768, 164235245, 164235256]
 int[] severity [0, 0, 1]
 int[] status [0, 0, 3]

Introduction to EPICS 7 – FNAL EPICS Development Town Hall – Andrew Johnson – 2020-02-20

11

Complex control

■ Possible to create complex structures representing, for example,
a detector, camera driver, file writer or camera plugin

■ Can operate on subset of fields for control or monitor whole
structure

■ With RPC can add “methods” and create distributed objects

V4 key concepts

Introduction to EPICS 7 – FNAL EPICS Development Town Hall – Andrew Johnson – 2020-02-20

13

pvData

■ System of memory resident structured data types
● Scalar fields

□ integer (1/8/16/32/64 bit, signed and unsigned)
□ float (32/64 bit)
□ string
□ enum

● Variant (any) and regular (tagged) unions
● Arrays
● Structured fields (nested structures)

■ Separate interfaces for introspection and data
● Client can analyze structure before accessing data
● Helper classes: factories for creating introspection and data structures

Introduction to EPICS 7 – FNAL EPICS Development Town Hall – Andrew Johnson – 2020-02-20

14

pvAccess

■ V4 communication protocol, defined by pvAccess protocol
specification

■ Client/server architecture, multiple providers per server
■ High performance network protocol

● Codec based
● Pluggable transports
● Pluggable security

■ Designed to transport pvData structures
● Also uses pvData structures for channel configuration requests

■ Successor to Channel Access

Introduction to EPICS 7 – FNAL EPICS Development Town Hall – Andrew Johnson – 2020-02-20

15

pvAccess communication flow

■ Client connects to channel (top level pvData structure)
■ Client creates a request object, specifying the specifics

● Request types: Process, Put, Get, PutGet, Monitor
● May use a subset of the structure
● More options to control processing, blocking

■ Both client and server create containers to hold data
■ Client executes the request (multiple times)

● pvAccess transmits only changed parts over the network

Introduction to EPICS 7 – FNAL EPICS Development Town Hall – Andrew Johnson – 2020-02-20

16

pvRequest and pvRequest string

■ Options for a pvAccess channel, sent at connection time
■ Requests supported depend on the server, e.g.

● Limit operation to part of a structure
● Processing options (process, block)
● Monitoring options: queue size (deadband, server-side filtering)

■ Cannot be introspected in the current implementations

Introduction to EPICS 7 – FNAL EPICS Development Town Hall – Andrew Johnson – 2020-02-20

17

Normative Types

■ Well-defined standard types to aid interoperability
■ Defines standard structures for alarm, timestamps,

enumerations
■ Generic simpler types for PVs

● scalar, scalar array
● enum
● matrix

■ Specific, more complex types for services and applications
● table
● array of PVs
● areaDetector image
● histogram
● aggregate

Introduction to EPICS 7 – FNAL EPICS Development Town Hall – Andrew Johnson – 2020-02-20

18

Normative Types - Examples

■ Specification of standard, named type
■ Often choices (field types, field names)
■ Required and optional fields
■ Extra fields can be added
■ Italics refer to other predefined types

NTScalar :=

structure
 scalar_t value
 string descriptor :opt
 alarm_t alarm :opt
 time_t timeStamp :opt
 display_t display :opt
 control_t control :opt

NTAggregate :=

structure
 double value
 long N
 double dispersion :opt
 double first :opt
 time_t firstTimeStamp :opt
 double last :opt
 time_t lastTimeStamp :opt
 double max :opt
 double min :opt
 string descriptor :opt
 alarm_t alarm :opt
 time_t timeStamp :opt

IOCs and PVA

Introduction to EPICS 7 – FNAL EPICS Development Town Hall – Andrew Johnson – 2020-02-20

20

IOC Extensions for PVA

■ EPICS 7 IOC now has pluggable server and link APIs
● IOCs can be built without RSRV (CA Server) support
● Additional server interfaces can be added to the IOC
● Additional record link types (JSON) can also be added

■ QSRV adds a pvAccess server to the IOC database
● Client applications can use pvAccess to connect to IOC records.
● IOC ‘pva’ record links can talk to other pvAccess servers.
● IOC must be built and linked with PVA libraries

■ The pvAccess client library can communicate over both
pvAccess and Channel Access network protocols
● Clients use the same API for both PVA and CA connections

This functionality is not being included in reimplementations

Introduction to EPICS 7 – FNAL EPICS Development Town Hall – Andrew Johnson – 2020-02-20

21

QSRV

■ pvAccess interfaces for use by IOCs
● Builds an executable softIocPVA with PVA server and client (PV link) support

■ Single PV server support with zero configuration
● Any public record.field PV can be accessed as a standard NT structure

■ Group PV server support
● Arbitrary groups of record.fields accessible under a new name as a single structure
● Configured in the IOC database (.db files) using info tags
● Data access is atomic; all records are locked before any data is fetched/stored
● Update event triggers are configurable

■ ‘pva’ JSON link support
● Record links can read/monitor data from other pvAccess servers (not just IOCs)

■ ‘p2p’ PVA gateway
● Provides fan-out & fan-in, connections between IP subnets

■ Documentation for pva2pva module provides full details

PVA Tools and Language Bindings

Introduction to EPICS 7 – FNAL EPICS Development Town Hall – Andrew Johnson – 2020-02-20

23

pvAccess command-line tools

Provide similar functionality to the CA command-line tools
■ pvinfo: Get server, connection state and introspection data of a

channel
■ pvget: Get “value” element (if one exists, else the complete

structure)
■ pvmonitor: Subscribe to monitor events from a channel
■ pvput: Put data to “value” element of a channel
■ pvcall: Make a remote procedure call (ChannelRPC)
■ pvlist: Find and list available PVA servers, or list the channels

provided by a specific server

■ eget: Extended get/monitor client with better support for
Normative Types (now unbundled)

Introduction to EPICS 7 – FNAL EPICS Development Town Hall – Andrew Johnson – 2020-02-20

24

Language Bindings: C++

■ Original implementation: EPICS V4
● pvData, pvAccess, normativeTypes, pvaClient, pvDatabase
● Written by Marty Kraimer and Matej Sekonraja (Cosylab)

□ Neither were experienced C++ developers
● Original code had many issues with object ownership, locking,

complex API; reworked by Michael Davidsaver
□ Also added simpler ‘pva’ APIs for client and server code

● Now stable, high performance

■ New implementation: PVXS
● Still in development, server already working
● Similar to ‘pva’ APIs, code should convert easily
● Written by Michael Davidsaver (Osprey DCS)
● Requires C++11 compiler

Introduction to EPICS 7 – FNAL EPICS Development Town Hall – Andrew Johnson – 2020-02-20

25

Language Bindings: Python

■ Original Python bindings: pvaPy
● Client and server APIs, RPC
● Written in C++ using Boost::Python
● Available through PyPI and Conda Forge

□ Linux & MacOS, no Windows yet
● Written and maintained by Siniša Veseli (APS, Argonne)

■ Alternative Python bindings: p4p
● Client and server APIs, RPC
● Includes a PVA Gateway with access security
● Written in C++ and Python
● Available through PyPI (pip install)

□ Linux, MacOS and Windows
● Written and maintained by Michael Davidsaver (Osprey DCS)

Introduction to EPICS 7 – FNAL EPICS Development Town Hall – Andrew Johnson – 2020-02-20

26

Language Bindings: Java

Two Java implementations

■ Original version
● Available from Maven Central
● API somewhat hard to use, more like C++ than native Java
● Written by Marty Kraimer and Matej Sekoranja (CosyLab), now

maintained by CS-Studio Group (Kunal Shroff, NSLS-2)

■ New implementation in development
● Designed for use in Phoebus
● APIs designed for native Java
● Written by Kay Kasemir (SNS, ORNL) with Michael Davidsaver

Current Status

Introduction to EPICS 7 – FNAL EPICS Development Town Hall – Andrew Johnson – 2020-02-20

28

Who is using PVA at this time?

■ Many sites: Using areaDetector to send images over pvAccess
for display, further image processing, or to file storage
● Using >90% of physical bandwidth on 10Gb ethernet (no compression)

■ NSLS-II: Middle-layer services using structured data
● MASAR service for saving/restoring setting snapshots
● ChannelFinder, archiver, elog interface, ...

■ SNS Beamlines: Implemented next generation of controls and
data acquisition

■ SLAC: Re-implementing high-level physics database access
using pvAccess and middle-layer services

■ FHI: Using the EPICS Archiver Appliance with pvAccess and
structured data

■ APS-U: New DAQ systems will transport high-speed machine
data from front-ends to client applications

Introduction to EPICS 7 – FNAL EPICS Development Town Hall – Andrew Johnson – 2020-02-20

29

Conclusions

■ EPICS 7: V4 extended V3 without replacing the IOC
■ PVA modules add flexible structures and an efficient network

protocol for transporting them
■ Set of well-defined standard data container types to allow

generic client applications to communicate with PVA servers
■ Used in production and development at many sites

Thank you...

	Slide 1
	Preface: What V4 is not
	Outline: What’s covered
	What is V4 and why was it developed?
	Describe EPICS V4 in six words
	What was V4 designed for?
	V4 fixes a number of problems in V3
	Structured data
	Efficient network transfer
	RPC type services
	Complex control
	V4 key concepts
	pvData
	pvAccess
	pvAccess communication flow
	pvRequest and pvRequest string
	Normative Types
	Normative Types - Examples
	IOCs and PVA
	IOC Extensions for PVA
	QSRV
	PVA Tools and Language Bindings
	pvAccess commandline tools
	Language Bindings: C++
	Language Bindings: Python
	Language Bindings: Java
	Current Status
	Who is using V4 at this time?
	Conclusions

